If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(6x^2+19x+7)/(3x+5)=x
We move all terms to the left:
(6x^2+19x+7)/(3x+5)-(x)=0
Domain of the equation: (3x+5)!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
3x!=-5
x!=-5/3
x!=-1+2/3
x∈R
-1x+(6x^2+19x+7)/(3x+5)=0
We multiply all the terms by the denominator
-1x*(3x+5)+(6x^2+19x+7)=0
We multiply parentheses
-3x^2-5x+(6x^2+19x+7)=0
We get rid of parentheses
-3x^2+6x^2-5x+19x+7=0
We add all the numbers together, and all the variables
3x^2+14x+7=0
a = 3; b = 14; c = +7;
Δ = b2-4ac
Δ = 142-4·3·7
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-4\sqrt{7}}{2*3}=\frac{-14-4\sqrt{7}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+4\sqrt{7}}{2*3}=\frac{-14+4\sqrt{7}}{6} $
| 6a+10=3a+35 | | n^2+11n+26=-2 | | 3a-50=2a+5 | | n^2+14n+45=-3 | | 4.2+8.1=x(1.9) | | (5z)=120 | | m-9.5=-7.3 | | 17m-18=15m-6 | | 3x+15=5x+1=2x+13 | | -4=p-8.2 | | -1.35+t=2.57 | | x^2+10=130 | | (2n)=(3n-5) | | (5p+7)=(3p-5) | | Y=-0.005x^2+2.1x+21.5 | | 12^x=1000000 | | x+x+(Y*Y*Y)=51 | | 3x=-86 | | (7t+5)=63 | | (6d+7)=113 | | 5+y*2=13 | | 500-x=0 | | (5z+1)=59 | | 4(1/2)+y=10 | | (9v+3)=60 | | (v-8)=60 | | 2+1/y-34=-12 | | (5m+5)=(8m+7) | | (8a+6)=52 | | (8d+6)=94 | | (3v-8)=(2v+8) | | (2v+8)=(3v-8) |